

Gas Well Deliquification Workshop

Sheraton Denver Hotel Denver, Colorado February 29 to March 2; 2016

Introduction to Plunger Lift

David Cosby, P.E. Shale Tec LLC

Introduction to Plunger Lift

How does plunger lift work Why is artificial lift required Plunger lift well requirements Applications, benefits, limitations

Primary Purpose

Removal of liquid from gas wells so that gas can flow freely to the surface

Feb 29 to Mar 2; 2016

HOW DOES PLUNGER LIFT WORK

Feb 29 to Mar 2; 2016

Bottom Hole Spring Plunger **Arrival Sensor** Lubricator with Catcher **Pressure Transducers Control Value(s) Gas Flow Meter Well Head Controller**

Feb 29 to Mar 2; 2016

Denver, Colorado

Feb 29 to Mar 2; 2016

Conventional Plunger

Plunger Rise Velocity Guideline 500 to 1000 fpm

"Fast enough to avoid stalling, slow enough to avoid damage"

Liquid is entering the tubing

Feb 29 to Mar 2; 2016

Feb 29 to Mar 2; 2016

TP

Feb 29 to Mar 2; 2016

CP

- Plunger falls against a flow rate
- Requires a strong well
- Typically operates on time
- Monitor Round Trip Time

Stage 1 Plunger Fall Mode (Gas, Liquid)

Control Valve

Control Value

- Ball & Sleeve close for few sec to few minutes
- Dart style may or may not need to close valve
- Plunger drops when gravity overcomes upward differential pressure created by flow rate
- Plunger continues to fall with internal valve open

Feb 29 to Mar 2; 2016

"Fast enough to avoid stalling, slow enough to avoid damage"

Stage 3 Plunger Rise

LP

- Control Valve Open
- Plunger rising

Control Value

- Gas is flowing
- CP flat to declining
- Liquid entering tubing

2016 Gas Well Deliquification Workshop Denver, Colorado

CP

TP

Denver. Colorado

14

Continuous Flow Plungers PCSFergusøn

Feb 29 to Mar 2; 2016

Depth to Bottom Hole Spring

Feb 29 to Mar 2; 2016

WHY IS ARTIFICIAL LIFT REQUIRED

2016 Gas Well Deliquification Workshop Denver, Colorado

Feb 29 to Mar 2; 2016

17

Denver, Colorado

Feb 29 to Mar 2; 2016

²⁰¹⁶ Gas Well Deliquification Workshop Denver, Colorado

Artificial Lift Types

PLUNGER LIFT WELL REQUIREMENTS

Feb 29 to Mar 2; 2016

Plunger Lift Well Requirements

Feb 29 to Mar 2; 2016

Feb 29 to Mar 2; 2016

Predicted critical flow rate is 20% less than Turner

SPE 120625-2009 "Guidelines for the Proper Application of Critical Velocity Calculations" by Sutton, Cox, Lea, Rowlan

SPE 94081-PA "A Systematic Approach to Predicting Liquid Loading in Gas Wells" by Gua, Ghalambor, Xu.

Feb 29 to Mar 2; 2016

Is Gas Volume Sufficient?

Multi Stage Plunger Lift

Multi-Stage Advantages:

Effective in GLRs nearing 1:1 gas to liquid (gassy oil wells)

PCSFergusøn

Gas Assist Inject gas into the annulus Supplement the lifting ability SFerguson

Is Gas Pressure Sufficient?

LOAD FACTOR

Liquid Load / Lift Pressure < or = 0.5

LIFT FACTOR

Lift Pressure / Liquid Load > or = 2.0 Lift Pressure > or = 2 X Liquid Load

FOSS and GAUL EQUATION

Predicts the casing pressure required to surface the plunger and liquid column

Lift Pressure_{req'd} = CP_{req'd} – LP

Foss and Gaul Equation

- CP_{req'd} = CP_{min} X {(A_{ann} + A_{tbg}) / A_{ann}}
- CP_{min} = {SLP + P_p + P_cFV} X {1 + D/K}
- CP = Casing Pressure; SLP = Sales Line Pressure
- A_{ann} = Area Annulus; A_{tbg} = Area Tubing
- P_p = Pressure required to lift just the plunger
- P_c = Pressure Required to lift 1 bbl of fluid and overcome friction
- FV = Fluid Volume above the Plunger
- K = Constant accounting for gas friction below the plunger
- D = Depth of the Plunger

Other Considerations

- ✓ Packer ? More gas volume required
- ✓ No holes in tubing
- \checkmark Same ID from BHS to lubricator
- ✓ Minimize restrictions!
- ✓ Flow meter properly sized
- ✓ Pipeline pressure limitations
- \checkmark Size dump values for surges
- ✓ Clean / dry gas supply available
- ✓ Select proper algorithm
- ✓ Preventative maintenance plan
- Knowledgeable operator(s) !!!

APPLICATIONS, BENEFITS, LIMITATIONS, ECONOMICS

Feb 29 to Mar 2; 2016

Applications

GAS WELLS

- ✓ Removal of liquids
- ✓ Reduction of emissions
- ✓ Keeps tubing clear

OIL WELLS

- ✓ Produce from high GLR wells
- ✓ Conserve formation pressure
- ✓ Control paraffin and hydrates

LOW GLR WELLS

- ✓ 2 Stage plunger lift
- ✓ Plunger assisted gas lift
- ✓ Gas assisted plunger lift

Benefits

No Telemetry

STABILIZES & IMPROVES PRODUCTION

- ✓ 10% to 20% improvement is common
- Keeps tubing clear of debris
- Long term solution (SPE 18868)
- Produces with a low casing pressure

GOOD FOR THE ENVIRONMENT

- Reduces methane emissions and lost gas
- Operates on solar energy

ECONOMICAL

- Low capital investment
- Low operating, maintenance costs
- Reduces chemical cost, venting, swabbing
- Rig not required for installation
- ✓ Cost of system is unaffected by well depth
- ✓ Reduces gas lift energy by 30 % to 70 %

With Telemetry

TABILIZE AND IMPROVE PRODUCTION

- Puts data in hands of experts
- Allows skilled operator to control many wells
- Optimize using real time data and trends
- Rapid problem detection & troubleshooting

ECONOMICAL

- ✓ ID & resolve problems before lost profits
- ✓ Reduce windshield time
- Reduce equipment repair and maintenance
- ✓ Reduce unplanned well downtime

SAFETY

- Remote, real time knowledge of well parameters
- ✓ Remote shut-in of wells when necessary
- ✓ Less drive time fuel, insurance, maintenance

Benefits

	PRODUCTION	DOWNTIME	VENTING	REPLACE PLUNGER
WELL # 1				
BEFORE	148 Mcf / d	22 %	3 X per Wk	Quarterly
AFTER	186 Mcf / d	8 %	None	None
	(25.7% Increase)	(63.6% Decrease)		
WELL # 2				
BEFORE	82 Mcf / d	60 %	Daily	Quarterly
AFTER	212 Mcf / d	10 %	None	None
	(158 % Increase)	(83.3% Decrease)		
			Plunger Lift Remote Improves Shale We JASON CHURCHILL, P.E. XTO Operations Engineer	DAVID COSBY, P.E. Business Development
			ENERGY substry of Destillad	

Limitations

Requires operator training! \checkmark Typical less than 100 bbls/day Can move over 200 bbls/day Low gas to liquid ratios Insufficient gas volume or pressure Difficult with small tubing ID \checkmark High sand production \checkmark Extreme paraffin content Excessive hydrates Low gravity crude oil

- ✓ Tubing set to high or low
- ✓ Flow line restrictions
- ✓ Holes in tubing
- Inconsistent tubing ID
- Packer requires higher GLR
- ✓ BHS less than 60 degree deviation
- Greater than 10 deg / 100 ft dog leg

Economics

COST ITEMS

- \checkmark Check tubing
 - ✓ Drift, broach, pressure check
- ✓ Set bottom hole spring
- ✓ Re-configure well head tree
- ✓ Install lubricator
- ✓ Install control (motor) value
- ✓ Install pressure transducers

COST ITEMS

- Establish communication with flow meter and "office"
- ✓ Install plunger lift controller
- ✓ Route clean, dry gas to solenoid
- ✓ Install plunger
- ✓ Swab well if necessary
- ✓ Establish controller settings

Maintain wells natural decline curve. Don't wait till production is lost!

Economics

The investment in a PCS Ferguson Plunger Lift system typically runs between \$2,500 and \$10,000. A plunger lift system could increase production by 100 Mcf/day or more.

PCS Ferguson Plunger Lift Equipment Catalogue - 2016

Guidelines & Recommended Practices Use of Plunger Lift for Deliquifying Gas Wells

Introduction

This paper discusses the considerations, applications, costs and best practices for use of Plunger Lift systems, particularly Tubing Plungers.

\$ 15,000 to \$ 25,000

Use the Natural Decline Curve to estimate production increases

February 29 to March 2

2016 Gas Well Deliquification Workshop Denver, Colorado

"World Oil" 1998

"It has been Conoco's experience, with more than 200 plunger lift systems in the San Juan basin, that the plunger operator is the single most important factor in keeping a plunger system operating efficiently. If an operator knows certain principles of plunger operation and gas well mechanics, he can effectively maintain and troubleshoot the system. His goal will be to optimize the system, keep a good maintenance schedule and attempt to flow the well against the lowest pressures possible. If an operator does not understand these principles, a system will loss efficiency due to poor maintenance. An operator who does not understand basic principles may try to "just keep the plunger running," and he may be frustrated when the system does not work well."

Dan Phillips, Conoco Inc., Farmington, New Mexico and Scott Listiak, Conoco Inc, Midland, Texas

Linkedin Group

"Plunger Lifted Gas Wells"

2016 Gas Well Deliquification Workshop Denver, Colorado

Tubing Fluid Height and Volume

Fluid Volume in Tubing (Barrels)

- FV = 0.002242 X (CP-TP) X (ID²)/SG
- CP=Casing Pressure; TP=Tubing Pressure
- ID=Tubing Inner Diameter (inches)
- SG = Specific Gravity (1.0 for water)

Fluid Height in Tubing (Feet)

- FH = (CP-TP) / (0.433 psi/ft X SG)
- O.433 psi/ft = Pressure gradient of water
- SG = Specific Gravity (1.0 for water)
- Typically, fluid column is 20 % liquid, 80 % gaseous liquid (foam). Divide results by 20% to obtain height of the gaseous liquid column

Tubing Fluid Height and Volume

2 3/8" tubing (1.995" ID)					2 7/8" tubing (2.441" ID)			
CP-TP (psi)	Liquid Volume (bbls ; SG = 1)	Liquid Height (solid column)	Liquid Height (80% gaseous)		CP-TP (psi)	Liquid Volume (bbls ; SG = 1)	Liquid Height (solid column)	Liquid Height (80% gaseous)
10	0.089	23 ft	115 ft		10	0.133	23 ft	115 ft
20	0.178	46 ft	231 ft		20	0.267	46 ft	231 ft
30	0.268	69 ft	346 ft		30	0.400	69 ft	346 ft
40	0.357	92 ft	462 ft		40	0.534	92 ft	462 ft
50	0.446	115 ft	577 ft		50	0.668	115 ft	577 ft
60	0.535	138 ft	692 ft		60	0.801	138 ft	693 ft
70	0.625	161 ft	808 ft		70	0.925	162 ft	808 ft
80	0.714	185 ft	923 ft		80	1.068	185 ft	924 ft
90	0.803	208 ft	1039 ft		90	1.202	208 ft	1039 ft
100	0.892	231 ft	1154 ft		100	1.336	231 ft	1154 ft
125	1.115	288 ft	1443 ft		125	1.670	289 ft	1443 ft
150	1.338	346 ft	1732 ft		150	2.003	346 ft	1732 ft
175	1.562	404 ft	2020 ft		175	2.338	404 ft	2020 ft
200	3.569	923 ft	4618 ft		200	5.343	923 ft	4616 ft

Feb 29 to Mar 2; 2016

2016 Gas Well Deliquification Workshop Denver, Colorado

Sufficient Volume and Pressure

Sufficient Gas Volume

No Packer

o 400 scf / bbl / 1000 ft of lift

Packer

o 2,000 scf / bbl / 1000 ft of lift

Sufficient Gas Pressure

Casing Pressure at least 1.5 X line pressure
 Lift Pressure at least 2 X greater than fluid load
 See Foss and Gaul requirements

Casing Pressure Required

Foss and Gaul (CP Required to Lift Plunger)

 $CP_{req'd} = CP_{min} X \{(A_{ann} + A_{tbg}) / A_{ann}\}$ $CP_{min} = \{SLP + P_p + P_cFV\} X \{1 + D/K\}$

Tubing	K	Pc
2 3/8	33,500	165
2 7/8	45,000	102
3	57,600	67

- CP = Casing Pressure; SLP = Sales Line Pressure
- Aann = Area Annulus; Atbg = Area Tubing
- P_p = Pressure required to lift just the plunger
- P_c = Pressure Required to lift 1 bbl of fluid and overcome friction
- FV = Fluid Volume above the Plunger
- K = Constant accounting for gas friction below the plunger
- D = Depth of the Plunger

Critical Flow Rate

Critical Flow Rate (Coleman, P_f Less Than 1,000 psi)

- $CV_{water} = 4.434 X [{(67 0.0031P_f)^{1/4}} / {(0.0031P_f)^{1/2}}]$
- * $CV_{condensate} = 3.369 X [{(45 0.0031P_f)^{1/4}} / {(0.0031P_f)^{1/2}}]$
- FR = CV X [pi X (ID/2)²] X (1 ft/144 in²) X 86,400 sec/day
- CV = Critical Velocity (ft/sec)
- FR = Flow Rate (scf/d)
- P_f = Flowing Pressure
- ID = Tubing Inner Diameter

Turner (P_f Greater Than 1,000 psi)

Turner = Coleman + 20%

Standard Cubic Foot

$SCF = ACF X P_f / P_s X T_s / T_f$

SCF = Standard Cubic Foot of gas

Volume of gas contained in 1ft³ at 60°F and 14.7 psi

ACF = Actual or Measured Cubic Foot

P_f = Flowing pressure (psi); P_s = 14.7 psi
T_f = Flowing temperature (°R)
T_s = Standard temperature (516.67°R)
°R = °F + 459.67

Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the <u>www.alrdc.com</u> web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.

Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.