Introduction to Plunger Lift

David Cosby, P.E.
Shale Tec LLC
How does plunger lift work
Why is artificial lift required
When is plunger lift required
Applications and benefits
Installation and operation
Safety
HOW DOES PLUNGER LIFT WORK
How Does Plunger Lift Work

Bottom Hole Spring
Plunger
Lubricator / Catcher
Arrival Sensor
Pressure Transducers
Control Valve(s)
Gas Flow Meter
Well Head Controller
How Does Plunger Lift Work

Stage	**Control Valve**	**Gas Flow**	**Plunger**	**Casing Pressure**
Fall (Gas, Liquid) | CLOSED | NONE | FALLING | INCREASE
Pressure Build | CLOSED | NONE | BOTTOM | INCREASE
Rise | OPEN | FLOW | RISING | DECREASE
Production | OPEN | FLOW | SURFACE | DECREASE

PLUNGER FALL VELOCITY
SPE 80891 – Determining how different plunger manufacturer features affect plunger fall velocity

LIQUID LOAD = \(CP - TP \)

LIFT PRESSURE = \(CP - LP \)

FOSS and GAUL
SPE 120636 – Modified Foss and Gaul model accurately predicts plunger rise velocity

February 18 – 20, 2013
2013 Gas Well Deliquification Workshop
Denver, Colorado
How Does Plunger Lift Work

Video courtesy of PCS Ferguson

Production Control Services (PCS) and Ferguson Beauregard are now PCS Ferguson
How Does Plunger Lift Work

DOWNWARD FORCE
- Liquid Load (CP-TP)
- Line Pressure Restrictions

PLUNGER EFFICIENCY
- Best – Brush or Pad
- Worst – Bar Stock

UPWARD FORCE
- Lift Pressure (CP – LP)

Time to Surface (min)

Depth to Bottom Hole Spring

Scale, Paraffin
- Hydrates
- Sand
- Motor valve trim size
- Choke (even if open!)
- Hold down assembly
- Orifice plate

SLOW
- 500 fpm

GOOD
- 1000 fpm

FAST
- 20 min

February 18 – 20, 2013
2013 Gas Well Deliquification Workshop
Denver, Colorado
WHY IS ARTIFICIAL LIFT REQUIRED
Why Is Artificial Lift Required

DECREASING GAS FLOW RATE
Why Is Artificial Lift Required

Production Control Services (PCS) and Ferguson Beauregard are now PCS Ferguson
Why Is Artificial Lift Required

Line Pressure
- Liquid
- Scale / Paraffin
- Chokes
- Control Valve Trim
- Orifice Plate
- Multiple 90 degree elbows

LOW Backpressure
- Produces

LOW FBHP
- Ensures

MOST Production

FLOWING BOTTOM HOLE PRESSURE
Why Is Artificial Lift Required

Flowing Pressure (Psi)

Flow Rate (Mscf / D)

Inflow Performance Relationship

\[Q_{sc} = C \left(P_r^2 - P_{wf}^2 \right)^n \]

- 60 psi
- 138 ft of water
- 2 3/8 Tubing

46 % of AOF
79 % of AOF

ABSOLUTE OPEN FLOW!

- 42 mcf /d
- $52,920/yr
- $3.5 / mcf

“Gas Well Deliquification” by Lea, Nickens, Wells
“Natural Gas Engineering Handbook” by Guo, Ghalambor

February 18 – 20, 2013
2013 Gas Well Deliquification Workshop
Denver, Colorado
Why Is Artificial Lift Required

DAILY PRODUCTION

LOST PRODUCTION

NATURAL DECLINE CURVE

CASING PRESSURE

LIQUID LOADED DECLINE CURVE

LOST PRODUCTION

480 – 350 = 130 mcf/d
130 mcf/d X 30 days X 12 months = 46,800 mcf
46,800 mcf X $ 3.50 / mcf = $ 163,800 / year
$ 163,800 / yr X 100 wells = $ 16.38 Million / yr

Flow Rate (mcf) vs. Pressure (psi) graph with annotations.
PLUNGER LIFT
WELL
REQUIREMENTS
Plunger Lift Well Requirements

IS LIQUID IN THE TUBING?

Production
Liquid Loading
Casing Pressure

Line Pressure
Plunger Lift Installed

Production
Erratic Production

February 18 – 20, 2013
2013 Gas Well Deliquification Workshop
Denver, Colorado
Plunger Lift Well Requirements

IS LIQUID IN THE TUBING?

Provided by Echometer and PLTech LLC

Turner Unloading Rate for Well Producing Water

- 4-1/2 OD: 3.958 ID
- 3-1/2: 2.992
- 2-7/8: 2.441
- 2-3/8: 1.995
- 2-1/16: 1.751

- What's happening at bottom of well?

- Coleman Critical Flow Rate is 20% lower than Turner

- SPE 120625 “Guidelines for the Proper Application of Critical Velocity Calculations” by Sutton, Cox, Lea, Rowlan

- SPE 94081 “A Systematic Approach to Predicting Liquid Loading in Gas Wells” by Gua, Ghalambor, Xu.
Plunger Lift Well Requirements

Video courtesy of Marathon

Liquid Loading
Unstable Slug Flow
2-in Tubing

[Image of liquid loading in a tube]
IS GAS VOLUME SUFFICIENT?

NO PACKER
400 SCF / BBL / 1,000 FT OF LIFT

Example:
400 scf X 10 bbls X 7500 ft / 1000 ft
30,000 scf or 30 mcf
Compare actual to required

Measure actual flow with clear tubing!

WITH PACKER
Higher GLR required.
Typically 2X No Packer.

IF PACKER ALREADY INSTALLED
Remove packer OR

Inject gas into casing if needed

Bottom Hole Spring
Perforated Tubing
Packer
Optional Standing Valve
IS GAS PRESSURE SUFFICIENT?

LIFT PRESSURE
Lift Pressure > = 2X Liquid Load

LOAD FACTOR
Liquid Load / Lift Pressure < = 0.5

FOSS AND GAUL

\[
CP_{\text{req'd}} = CP_{\text{min}} \times \left\{ \frac{(A_{\text{ann}} + A_{\text{tbg}})}{A_{\text{ann}}} \right\}
\]

\[
CP_{\text{min}} = \{SLP + P_p + P_c FV\} \times \{1 + D/K\}
\]

- **CP** = Casing Pressure; **SLP** = Sales Line Pressure
- **A_{\text{ann}}** = Area Annulus; **A_{\text{tbg}}** = Area Tubing
- **P_p** = Pressure req’d to lift just the plunger
- **P_c** = Pressure req’d to lift 1 bbl of fluid and overcome friction
- **FV** = Fluid Volume above the Plunger
- **K** = Constant accounting for gas friction
- **D** = Depth of the Plunger

OTHER CONSIDERATIONS

- Packer ?
- No holes in tubing
- Same ID from BHS to Lubricator
- End of tubing location
- Control valve trim size
- Orifice plate trim size
- Flow meter properly sized
- Pipeline pressure surge restrictions
- Dump valves appropriate for surges
- Clean / dry gas supply available
- Knowledgeable operator(s) ! ! !

Plunger Lift Well Requirements

<table>
<thead>
<tr>
<th>Tubing</th>
<th>K</th>
<th>Pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/8</td>
<td>33,500</td>
<td>165</td>
</tr>
<tr>
<td>2 7/8</td>
<td>45,000</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>57,600</td>
<td>67</td>
</tr>
</tbody>
</table>
APPLICATIONS AND BENEFITS
Applications and Benefits

TYPICAL APPLICATIONS

GAS WELLS
- ✔ Removal of liquids
- ✔ Reduction of emissions
- ✔ Keeps tubing free of paraffin, salt & scale

OIL WELLS
- ✔ Produce from high GLR wells
- ✔ Conserve formation pressure
- ✔ Control paraffin and hydrates

LOW GAS TO LIQUID RATIO WELLS
- ✔ 2 Stage plunger lift
- ✔ Plunger assisted gas lift
- ✔ Gas assisted plunger lift

TYPICAL BENEFITS

STABILIZES AND IMPROVES PRODUCTION
- ✔ 20% improvement is common
- ✔ Keeps tubing clear of debris
- ✔ Can produce wells to depletion
- ✔ Produces with a low casing pressure

ECONOMICAL
- ✔ Low initial investment
- ✔ Low operating, repair and maintenance costs
- ✔ Reduces chemical cost, venting and swabbing
- ✔ Rig not required for installation
- ✔ Cost of system is unaffected by well depth

GOOD FOR THE ENVIRONMENT
- ✔ Reduces methane emissions and lost gas
- ✔ Operates on solar energy

Primary Purpose

Removal of liquid from gas wells so that gas can flow freely to the surface
Applications and Benefits

<table>
<thead>
<tr>
<th>TWO STAGE PLUNGER LIFT</th>
<th>GAS ASSISTED PLUNGER LIFT</th>
<th>PLUNGER ASSISTED GAS LIFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Low GLR, marginal wells</td>
<td>✓ Low GLR wells</td>
<td>✓ Low GLR wells</td>
</tr>
<tr>
<td>✓ 200 scf / bbl / 1000 ft</td>
<td>✓ Gas injected to annulus 400 scf / bbl / 1000 ft</td>
<td>✓ Add plunger to intermittent gas lift wells</td>
</tr>
<tr>
<td>✓ Two or more plungers in the same well</td>
<td>✓ Short shut-in times</td>
<td>✓ Reduces injected gas requirements (30 % range)</td>
</tr>
<tr>
<td>✓ Ideal for wells with packers</td>
<td>✓ +/- 250 Bbls / day possible</td>
<td>✓ Eliminates fall back</td>
</tr>
<tr>
<td>✓ Can be used with injection gas</td>
<td>✓ Plunger seal is important</td>
<td>✓ Increases production</td>
</tr>
</tbody>
</table>

February 18 – 20, 2013

2013 Gas Well Deliquification Workshop
Denver, Colorado
Benefits with Telemetry

STABILIZE AND IMPROVE PRODUCTION
✓ Allows skilled operator to control many wells
✓ Optimize production using real time data and trends
✓ Rapid and more accurate troubleshooting

ECONOMICAL
✓ Identify & resolve problems before profits are lost
✓ Reduce windshield time
✓ Reduce equipment repair and maintenance
✓ Reduce unplanned well downtime

SAFETY
✓ Remote, real time knowledge of well site parameters
✓ Remote shut-in of wells when necessary
✓ Less drive time (fuel, insurance, maintenance)
COST ITEMS
✓ Check tubing
 ✓ Drift, broach, pressure check
✓ Set bottom hole spring
✓ Re-configure well head tree
✓ Install lubricator
✓ Install control (motor) valve
✓ Install pressure transducers

$15,000 to $25,000

COST ITEMS
✓ Establish communication with flow meter and “office”
✓ Install plunger lift controller
✓ Route clean, dry gas to solenoid
✓ Install plunger
✓ Swab well if necessary
✓ Establish controller settings

$ 4 / mcf

Maintain wells natural decline curve. Don’t wait till production is lost!

<table>
<thead>
<tr>
<th>Flow Rate</th>
<th>10 % Change</th>
<th>15 % Change</th>
<th>20 % Change</th>
<th>25 % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mcf/d</td>
<td>$ 1,200 / mo</td>
<td>$ 1,800 / mo</td>
<td>$ 2,400 / mo</td>
<td>$ 3,000 / mo</td>
</tr>
<tr>
<td>200 Mcf/d</td>
<td>$ 2,400 / mo</td>
<td>$ 3,600 / mo</td>
<td>$ 4,800 / mo</td>
<td>$ 6,000 / mo</td>
</tr>
<tr>
<td>300 Mcf/d</td>
<td>$ 3,600 / mo</td>
<td>$ 5,400 / mo</td>
<td>$ 7,200 / mo</td>
<td>$ 9,000 / mo</td>
</tr>
<tr>
<td>400 Mcf/d</td>
<td>$ 4,800 / mo</td>
<td>$ 7,200 / mo</td>
<td>$ 9,600 / mo</td>
<td>$ 12,000 / mo</td>
</tr>
<tr>
<td>500 Mcf/d</td>
<td>$ 6,000 / mo</td>
<td>$ 9,000 / mo</td>
<td>$ 12,000 / mo</td>
<td>$ 15,000 / mo</td>
</tr>
</tbody>
</table>
INSTALLATION AND OPERATION CONSIDERATIONS
Installation Considerations

- Establish a standardized installation process!
- Dual master valve
- Dual outlet lubricator
- Platform to reach lubricator
- Pressure transducer type, locations
- Pressure gauge type, locations
- Solenoid supply - clean / dry gas!
- Control valve type. Trim size, materials.
- Ball valve model number & locations
- Hammer union locations
- Flow meter communication - trench or radio?
- Communications with office - spread spectrum radio or cell phone data radio
- Controller location and attachment method
- Lightening suppression
- Emergency shut off
- Sand cut probe

WELL HEAD
- Well head ID compatible with tubing ID
- Remove unnecessary WH components
 - Minimize height of wellhead tree
- Eliminate gaps and ID inconsistencies
- Sleeve wellhead if necessary
 - Maintain same ID – BHS to Lubricator

Standardize Installation!
Installation Considerations

Minimize Restrictions!

- Scale, Paraffin – Drift and broach tubing
- Bottom hole spring holddown – size, debris
- Motor valve trim – full port opening
- Orifice plate at flow meter
- Well head – Sleeve if needed
- Chokes

Flow Area

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Area</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8 inch</td>
<td>0.601 inch²</td>
<td>0 %</td>
</tr>
<tr>
<td>1 inch</td>
<td>0.785 inch²</td>
<td>30.6 %</td>
</tr>
<tr>
<td>1 ¼ inch</td>
<td>1.227 inch²</td>
<td>104.2 %</td>
</tr>
<tr>
<td>1 ½ inch</td>
<td>1.767 inch²</td>
<td>194.0 %</td>
</tr>
</tbody>
</table>
Installation Considerations

End of Tubing Location - Vertical Well

Tubing too high

Tubing too low or water column too high

Tubing set correctly

Liquid column pressuring lower zones

Clear water column and restart plunger

Tubing as low as possible and still surface plunger
Key Considerations:
- What is the tubing ID?
- How is BHS attached to tubing?
- What is the seating nipple ID?
- What is the tubing deviation at the anchor point?
- Is a SV and pressure relief spring required?
- If vertical, where is the end of tubing relative to the perf’s?

Bottom Hole Spring Location - Deviation

45 to 50 degree typical

SPE 147225 – Analysis of Plunger Lift Applications in the Marcellus Shale

<table>
<thead>
<tr>
<th>MD</th>
<th>TVD</th>
<th>EW</th>
<th>NS</th>
<th>DIP</th>
<th>AZM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
<td>-0.33</td>
<td>-0.07</td>
<td>0.4</td>
<td>257.4</td>
</tr>
<tr>
<td>158</td>
<td>158</td>
<td>-0.88</td>
<td>-0.47</td>
<td>0.9</td>
<td>224.6</td>
</tr>
<tr>
<td>188</td>
<td>187.99</td>
<td>-1.1</td>
<td>-0.86</td>
<td>0.9</td>
<td>192.9</td>
</tr>
<tr>
<td>219</td>
<td>218.98</td>
<td>-1.08</td>
<td>-1.5</td>
<td>1.5</td>
<td>169.5</td>
</tr>
<tr>
<td>7382</td>
<td>7213.09</td>
<td>809.2</td>
<td>-451.33</td>
<td>43.6</td>
<td>13.8</td>
</tr>
<tr>
<td>7413</td>
<td>7235.11</td>
<td>814.22</td>
<td>-430.1</td>
<td>45.9</td>
<td>12.8</td>
</tr>
<tr>
<td>7445</td>
<td>7256.99</td>
<td>819.27</td>
<td>-407.3</td>
<td>47.8</td>
<td>12.2</td>
</tr>
<tr>
<td>7476</td>
<td>7277.16</td>
<td>824.2</td>
<td>-384.29</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>7508</td>
<td>7296.46</td>
<td>829.35</td>
<td>-359.3</td>
<td>54.8</td>
<td>11.3</td>
</tr>
<tr>
<td>7539</td>
<td>7313.41</td>
<td>834.27</td>
<td>-333.82</td>
<td>58.9</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Tubing Details: (02/15/2008)

- 229 jts 2 3/8" 4.7 lb/ft, J-55, FBN tbg
- F Nipple @ 7432.9
- 1 jt 2 3/8" 4.7 lb/ft, J-55, FBN tbg
- Notched Collar w/ ceramic disk
- EOT @ 7465 ft.

Current

- MD = 742 ft
- KB = 763 ft
- API# 42-251-32044

Installation Considerations

Bottom Hole Spring Location – Horizontal Well

February 18 – 20, 2013

2013 Gas Well Deliquification Workshop

Denver, Colorado
Standing Valve

Installation Considerations

Standing Valve

Line Pressure

Daily Production

Standing Valve

26% Production Increase

Horizontal wells – may need specialized SV if set at high deviation
All wells with EOT above perfs
All wells when TP/CP equalize

Flow Rate

CP

TP

Detail Well History

February 18 – 20, 2013

2013 Gas Well Deliquification Workshop

Denver, Colorado
Installation Considerations

Plunger Selection

Use the right plunger for the well conditions.

Replace worn plungers BEFORE production declines.

February 18 – 20, 2013
2013 Gas Well Deliquification Workshop
Denver, Colorado
Open Conditions
(After fall time elapses)

- Time = set point
- Tubing pressure = set point
- Casing pressure = set point
- Tubing/Casing = set point
- Tubing – Line = set point
- Lift pressure = set point
- Lift pressure = Foss and Gaul
 = % of Foss and Gaul
- Load Factor = set point

Open at minimum pressure required to surface plunger at desired plunger velocity

Close Conditions
(After plunger surfaces)

- Time = set point
- Tubing pressure = set point
- Casing pressure = set point
- Flow Rate = Critical flow
 = % of critical

Maximize production while allowing the designed quantity of liquid to enter tubing on every cycle

Algorithm Selection

- Operate at the maximum number of cycles to generate the lowest average flowing bottom hole pressure

- Load Factor = Liquid Load / Lift Pressure

February 18 – 20, 2013

2013 Gas Well Deliquification Workshop
Denver, Colorado
Operation Considerations

Preventative Maintenance

Method
- Who? What? When? How to track?

Typical “checks”
- Plunger
 - When to replace? How do you know?
- Lubricator
 - Spring, catcher, connection to WH
- Bottom hole spring
 - Debris, spring, seal
- Motor valve
 - Trim, gas supply if utilized
- Battery / Solar panel
- Valves - grease
- Arrival sensor & cable – no misses!
- Tubing – no obstructions, no holes
- Flow meter calibration

Other

Organizational structure
- In house optimizers?
- Field operator responsibilities?

Training
- Who? How often? Track learning!
- Basic plunger lift principles
- Plunger lift equipment
- Optimization of wells
- Troubleshooting
- Controller settings
- Problem solving process

Initial well lineout
- Who?

Remote monitor and optimize
- In house? 3rd Party?
Arrive at site safely!

- In 2011, more than 2 out of every 5 fatal workplace incidents were transportation accidents.

- Four primary causes of O&G related transportation accidents:
 - Ignoring the speed limit
 - Using a cell phone while driving

 About 80% of people involved in traffic accidents are distracted.
 - Not wearing a seat belt

 63% of people killed in traffic accidents were not wearing seat belts.
 - Lack of rest

 Tired drivers involved in 4,000 road crashes in Texas in 2010.
Job Safety Analysis (www.osha.gov)
- Identify the sequence of steps to complete the job
- Identify hazards or potential hazards for each step
- Identify every possible source of energy (electrical, mechanical, pressure, height, etc)
- Determine necessary actions to eliminate, control, or minimize hazards
- Each safe job procedure or action must correspond to the job steps & identified hazards

Hydrogen Sulfide (H_2S)
- 1 ppm Can be smelled
- 10 ppm 8-hour exposure permitted
- 200 ppm Numbs smell rapidly and burns eyes, throat
- 500 ppm Loss of reasoning and balance. Respiratory disturbance in 2 – 15 minutes
- 700 ppm Loss of consciousness quickly.
- 1,000 ppm Unconsciousness occurs at once.

Appropriate Training!
- Hard Hat, Steel Toe Boots
- Flame retardant clothing
- Safety glasses
- H2S monitor

What Is Hydrogen Sulfide?
Hydrogen sulfide is a naturally occurring gas that is produced along with natural gas and crude oil. It can be fatal if breathed!
Serious Injuries

- Pressure traps (hydrates, sand, scale)
- Lubricator cap off, pressure trap under plunger
- Open master valve, hammer unions not secure
- Installing well head with underrated equipment
- **High plunger velocity – especially when venting to tanks**
- Compressed lubricator springs
- Removing cap, cracking open control valve
- Pressure gauges are not always right
Injury

- An ice plug in the lubricator released and struck a worker in the head

Contributing factors (partial list):

- Ice build up in the lubricator assembly
- Poor procedures in identifying potential hazards
- Lack of operator training in safe work practices for the use of this equipment
- Removing lubricator cap with contained pressure
- Ice build up in the spring housing
- Paraffin, wax, sand and hydrates build up in the tubing string
- Poorly designed springs or stops
- No methanol injection or heat trace to keep ice and hydrates from forming
- Fast Plunger Arrivals
 - Plungers traveling “Dry” with little or no fluid
 - Changes in line pressure, causing fast arrivals
 - Change in plunger style used in well
HYDRATES, PARAFFIN, SAND PREVENT PLUNGER FROM FALLING TO BOTTOM OF THE WELL

ICE / SAND BUILD-UP IN SPRING HOUSING

HYDRATE
ICE LIKE CRYSTALLINE SOLID FORMED FROM A MIXTURE OF WATER AND NATURAL GAS AT LOW TEMPERATURES AND HIGH PRESSURES

PLUNGER HELD AT SURFACE, FLOW REGIME CHANGED CAUSING FORMATION OF HYDRATES

ICE / SAND BUILD-UP IN SPRING HOUSING

TOP FLOW LINE NOT TIED IN CAN RESULT IN PRESSURE TRAP

Have a Plan Be Safe!
Linkedin Group

“Plunger Lifted Gas Wells”
Fluid Volume in Tubing (Barrels)

- \(FV = 0.002242 \times (CP-TP) \times (ID^2)/SG \)
- \(CP = \) Casing Pressure; \(TP = \) Tubing Pressure
- \(ID = \) Tubing Inner Diameter (inches)
- \(SG = \) Specific Gravity (1.0 for water)

Fluid Height in Tubing (Feet)

- \(FH = (CP-TP) / (0.433 \text{ psi/ft} \times SG) \)
- 0.433 psi/ft = Pressure gradient of water
- \(SG = \) Specific Gravity (1.0 for water)
- Typically, fluid column is 20% liquid, 80% gaseous liquid (foam). Divide results by 20% to obtain height of the gaseous liquid column
Tubing Fluid Height and Volume

2 3/8” tubing (1.995” ID)

<table>
<thead>
<tr>
<th>CP-TP (psi)</th>
<th>Liquid Volume (bbls ; SG = 1)</th>
<th>Liquid Height (solid column)</th>
<th>Liquid Height (80% gaseous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.089</td>
<td>23 ft</td>
<td>115 ft</td>
</tr>
<tr>
<td>20</td>
<td>0.178</td>
<td>46 ft</td>
<td>231 ft</td>
</tr>
<tr>
<td>30</td>
<td>0.268</td>
<td>69 ft</td>
<td>346 ft</td>
</tr>
<tr>
<td>40</td>
<td>0.357</td>
<td>92 ft</td>
<td>462 ft</td>
</tr>
<tr>
<td>50</td>
<td>0.446</td>
<td>115 ft</td>
<td>577 ft</td>
</tr>
<tr>
<td>60</td>
<td>0.535</td>
<td>138 ft</td>
<td>692 ft</td>
</tr>
<tr>
<td>70</td>
<td>0.625</td>
<td>161 ft</td>
<td>808 ft</td>
</tr>
<tr>
<td>80</td>
<td>0.714</td>
<td>185 ft</td>
<td>923 ft</td>
</tr>
<tr>
<td>90</td>
<td>0.803</td>
<td>208 ft</td>
<td>1039 ft</td>
</tr>
<tr>
<td>100</td>
<td>0.892</td>
<td>231 ft</td>
<td>1154 ft</td>
</tr>
<tr>
<td>125</td>
<td>1.115</td>
<td>288 ft</td>
<td>1443 ft</td>
</tr>
<tr>
<td>150</td>
<td>1.338</td>
<td>346 ft</td>
<td>1732 ft</td>
</tr>
<tr>
<td>175</td>
<td>1.562</td>
<td>404 ft</td>
<td>2020 ft</td>
</tr>
<tr>
<td>200</td>
<td>3.569</td>
<td>923 ft</td>
<td>4618 ft</td>
</tr>
</tbody>
</table>

2 7/8” tubing (2.441” ID)

<table>
<thead>
<tr>
<th>CP-TP (psi)</th>
<th>Liquid Volume (bbls ; SG = 1)</th>
<th>Liquid Height (solid column)</th>
<th>Liquid Height (80% gaseous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.133</td>
<td>23 ft</td>
<td>115 ft</td>
</tr>
<tr>
<td>20</td>
<td>0.267</td>
<td>46 ft</td>
<td>231 ft</td>
</tr>
<tr>
<td>30</td>
<td>0.400</td>
<td>69 ft</td>
<td>346 ft</td>
</tr>
<tr>
<td>40</td>
<td>0.534</td>
<td>92 ft</td>
<td>462 ft</td>
</tr>
<tr>
<td>50</td>
<td>0.668</td>
<td>115 ft</td>
<td>577 ft</td>
</tr>
<tr>
<td>60</td>
<td>0.801</td>
<td>138 ft</td>
<td>693 ft</td>
</tr>
<tr>
<td>70</td>
<td>0.925</td>
<td>162 ft</td>
<td>808 ft</td>
</tr>
<tr>
<td>80</td>
<td>1.068</td>
<td>185 ft</td>
<td>924 ft</td>
</tr>
<tr>
<td>90</td>
<td>1.202</td>
<td>208 ft</td>
<td>1039 ft</td>
</tr>
<tr>
<td>100</td>
<td>1.336</td>
<td>231 ft</td>
<td>1154 ft</td>
</tr>
<tr>
<td>125</td>
<td>1.670</td>
<td>289 ft</td>
<td>1443 ft</td>
</tr>
<tr>
<td>150</td>
<td>2.003</td>
<td>346 ft</td>
<td>1732 ft</td>
</tr>
<tr>
<td>175</td>
<td>2.338</td>
<td>404 ft</td>
<td>2020 ft</td>
</tr>
<tr>
<td>200</td>
<td>5.343</td>
<td>923 ft</td>
<td>4616 ft</td>
</tr>
</tbody>
</table>
Sufficient Gas Volume

- No Packer
 - 400 scf / bbl / 1000 ft of lift
- Packer
 - 2,000 scf / bbl / 1000 ft of lift

Sufficient Gas Pressure

- Casing Pressure at least 1.5 X line pressure
- Lift Pressure at least 2 X greater than fluid load
- See Foss and Gaul requirements
Foss and Gaul (CP Required to Lift Plunger)

- $\text{CP}_{\text{req'd}} = \text{CP}_{\text{min}} \times \left(\frac{A_{\text{ann}} + A_{\text{tbg}}}{A_{\text{ann}}} \right)$
- $\text{CP}_{\text{min}} = \{\text{SLP} + P_p + P_c FV\} \times \{1 + D/K\}$

- CP = Casing Pressure; SLP = Sales Line Pressure
- $A_{\text{ann}} = \text{Area Annulus}; A_{\text{tbg}} = \text{Area Tubing}$
- $P_p = \text{Pressure required to lift just the plunger}$
- $P_c = \text{Pressure Required to lift 1 bbl of fluid and overcome friction}$
- FV = Fluid Volume above the Plunger
- $K = \text{Constant accounting for gas friction below the plunger}$
- $D = \text{Depth of the Plunger}$

<table>
<thead>
<tr>
<th>Tubing</th>
<th>K</th>
<th>P_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/8</td>
<td>33,500</td>
<td>165</td>
</tr>
<tr>
<td>2 7/8</td>
<td>45,000</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>57,600</td>
<td>67</td>
</tr>
</tbody>
</table>
Critical Flow Rate (Coleman, P_f Less Than 1,000 psi)

- $CV_{\text{water}} = 4.434 \times \left\{ \frac{\left(67 - 0.0031P_f \right)^{1/4}}{(0.0031P_f)^{1/2}} \right\}$
- $CV_{\text{condensate}} = 3.369 \times \left\{ \frac{\left(45 - 0.0031P_f \right)^{1/4}}{(0.0031P_f)^{1/2}} \right\}$
- $FR = CV \times \pi \times (ID/2)^2 \times \left(\frac{1 \text{ ft}}{144 \text{ in}^2} \right) \times 86,400 \text{ sec/day}$

CV = Critical Velocity (ft/sec)

FR = Flow Rate (scf/d)

P_f = Flowing Pressure

ID = Tubing Inner Diameter

Turner (P_f Greater Than 1,000 psi)

- Turner = Coleman + 20%
Standard Cubic Foot

\[
SCF = ACF \times \frac{P_f}{P_s} \times \frac{T_s}{T_f}
\]

- **SCF** = Standard Cubic Foot of gas
 - Volume of gas contained in 1ft\(^3\) at 60\(^\circ\)F and 14.7 psi
- **ACF** = Actual or Measured Cubic Foot
- **\(P_f\)** = Flowing pressure (psi); **\(P_s\)** = 14.7 psi
- **\(T_f\)** = Flowing temperature (\(^\circ\)R)
- **\(T_s\)** = Standard temperature (516.67\(^\circ\)R)
- \(^\circ\)R = \(^\circ\)F + 459.67
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their companies, provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.