

Appalachian Basin Gas Well Deliquification Seminar

Marietta College Marietta, Ohio June 4 – 6, 2012

Plunger Lift Optimize and Troubleshoot

David Cosby, P.E.

Ferguson Beauregard

CONTENTS

- **Optimized** ?
- **Optimize a single well**
- **Optimize many wells**

PRIMARY PURPOSE

Remove liquid from the tubing so gas can flow freely to the surface

OPTIMIZED

✓ 70 % or more of AOF

✓ On original decline curve

Know production target (Flow rate or casing pressure)

- Mechanical considerations
 - > Minimize restrictions chokes, motor valve trim, orifice plate, etc
 - > No holes in tubing
 - Same ID spring to spring
 - > No packer
 - Bottom hole spring location
 - > End of tubing relative to perforations
- Select the appropriate plunger

Use checklists!

- Pre-Installation
- Installation
- > Troubleshooting
- ➢ Etc

Select the appropriate algorithm

- Time assumes limited well variations
- > Self adjusting algorithms can be less labor intensive
- Minimize variation! Same lift pressure and liquid load
- Optimize production use plunger velocity as indicator

Pre-Installation checklist

ltem	Description		How determined?	Yes	No
1	Approaching liquid loading	0 0 0	Currently adding foaming agent Flow rate is less than critical Production peaks and valleys	√	
	Prior 90 day production chart available?			\checkmark	
2	Well bore diagram available			\checkmark	
	Well bore survey available			\checkmark	
	Current choke setting	Eva	luate at full open choke	\checkmark	
3	Packer in well (2000 scf / bbl / 1000 ft of lift)				~
J .	Gas lift mandrel in well				✓
	Sufficient gas volume (400 scf / bbl / 1000 ft of lift)	0 0	Actual = Required =	√	
	Sufficient gas pressure (Lift pressure >/= 2 X Liquid load)	0 0	Lift pressure (after X time shut-in) = Liquid load =	~	

Pre-Installation checklist

ltem	Description	How determined?	Yes	No
4	Estimate production increase	Review prior 90 day downtime Review production chart Review IPR curve A pressure reduction of X = Y Mcf = Z \$'s	√	
5	Known plumbing configuration		\checkmark	
6	Reviewed data sheet with supplier		\checkmark	
	Orifice plate ID known	ID =	\checkmark	
7	Motor valve trim size known	Trim size / type =	\checkmark	
	Check for other restrictions		\checkmark	
8	Determine bottom hole spring reqm'ts	Location, seating nipple type / ID, standing valve with pressure relief spring	~	
9	Determine telemetry plan. Contact IT and gas measurement group if needed		~	
10	Suppliers contacted, parts available. Installation schedule confirmed.		~	

Pre-Installation checklist

Well loaded symptoms

- Well is down frequently
- Adding foaming agent to well
- Intermittent well
- Frequently swabbing or venting
- Production fall off decline curve
- Significant peaks and valleys in production chart
- Flow rate nearing critical

Plumbing configuration

- □ Ensure dry, clean gas supply to solenoid
- By Pass loop for motor valve needed?
- □ ID ball valve locations.
- □ Sufficient ports for transducers, gauges, etc
- Ensure no liquid traps
- □ Minimize number of 90 degree bends.
- Platform needed to access lubricator?
- Emergency shut-down device required?

Bottom hole sprig location

- □ Know seating nipple ID
- ☐ Horizontal wells Less than 50 degree deviation.
- Vertical wells as low as possible and still surface plunger
- Prefer standing valve with pressure relief spring

Installation Process

Installation & Start-up Process

- 1. Set tubing plug and pressure test tubing. If tubing integrity is good, continue.
- 2. Check tubing diameter using a ring gauge. If necessary, broach the tubing to ensure no tight spots between the seating nipple and lubricator connection point.
- Ensure well head diameter is the same as the tubing ID. If larger, sleeve the wellhead.
- Prepare the flow line and install the flanged control valve for plunger lift control.
- Install the lubricator (dual outlet preferred) on the wellhead and plumb in the flow line.

Installation & Start-up Process

- 6. Set the bottom hole spring assembly at the prescribed location.
- 7. Install the plunger lift controller, ensuring required supply line pressure to the solenoid latch value is **reliable and free of debris and liquid**. Do not over pressurize the solenoid value or motor value!
- With the well closed, observe casing and tubing pressure. If the well is liquid loaded, swab the well until the available Lift Pressure (Casing Line) is at least 2 times the Liquid Load in the tubing (Casing Tubing).
- 9. Engage the catcher to hold the plunger. Place the selected plunger in the lubricator. **Ensure the plunger selection matches the well conditions.**
- 10. Observe the casing pressure. If casing pressure is high, resulting in a potential rapid plunger run, open the well to bleed off some casing pressure until it is in an acceptable range. Be careful not to liquid load the well during this process.
- 11. If casing pressure is in an adequate range, drop the selected plunger.

Installation & Start-up Process

- 11. Using plunger fall time calculations, allow adequate time for the plunger to reach the bottom hole spring assembly.
- 12. Document the lift pressure prior to opening the well. Allow the plunger to surface, documenting plunger arrival velocity. Generally, plunger arrival velocities between 500 and 1000 feet per minute are desirable.
- 13. Allow the well to flow until the flow rate approaches the critical flow rate. Then, shut the well in, documenting the liquid load soon after the well is closed. Compare the liquid load, lift pressure and plunger arrival velocity.
- 14. If necessary, adjust controller settings in preparation for the next cycle to achieve optimal production at desirable plunger velocities.
- Optimal Production is achieved at the lowest flowing bottom hole pressure
- Practical application strives toward operating at low casing pressures, thus lifting small amounts of fluid on each cycle, cycling many times a day.

Algorithm

Open Conditions

(After fall time elapses)

- Time = set point
- Tubing pressure = set point
- Casing pressure = set point
- Tubing/Casing = set point
- o Tubing Line = set point
- Lift pressure = set point
- Lift pressure = Foss and Gaul
- Load Factor = Set point

Load Factor = Liquid Load / Lift Pressure

Close Conditions

(After plunger surfaces)

et point

- Tubing pressure = set point
- Casing pressure = set point
- Flow Rate
- = set point
- = Critical flow
- = % of critical

Objective:

Maximize production while allowing the designed quantity of liquid to enter tubing on every cycle

Objective: Open at minimum pressure required to surface plunger at desired plunger velocity

Design Lift Cycle

Design cycle aide

EchoMeter Plunger Lift Calculator

CONVENTIONAL PLUNGER EXAMPLE (8000 foot deep well)

TRADITIONAL

- Fall time (Use EchoMeter to optimize)
 - ➤ Gas 7750 ft @ 180 fpm
 - Liquid 250 ft @ 40 fpm (1 bbl)
 - \succ Total = 43 min + 6 min
 - ➤ Total = 49 min + 10%
 - ➢ Total = 54 min
- ➢ CP Build
 - > 30 min to reach req'd pressure
 - Higher pressure req'd to lift 1 bbl
- Rise Time
 - ➢ 600 fpm = 13 min
- Production mode (afterflow)
 - ➢ 60 min
- Total cycle = 2.6 hours or 9 trips / day
- Total Production time = 9 hours (Partially in liquid loaded tubing)

FREQUENT TRIPS

- Fall time (Use EchoMeter to optimize)
 - ➤ Gas 7937 ft @ 800 fpm
 - Liquid 63 ft @ 40 fpm (¼ bbl)
 - ➤ Total = 10 min + 1.5 min
 - ➤ Total = 11.5 min + 10%
 - Total = 12.5 min
- ➢ CP Build
 - > Open when plunger reaches bottom
 - Less pressure req'd to lift ¼ bbl
- Rise Time
 - ➢ 600 fpm = 13 min
- Production mode (afterflow)
 - ➢ 15 min
- Total cycle = 40.5 min or 35.5 trips / day
- Total Production time = 8.75 hours (Clear tubing, lower flowing pressure)

Design Lift Cycle

Plunger falls when well is open

Only round trip times recorded

Less shut-in

Excessive plunger velocities possible

- 1. Install artificial lift before production declines
- 2. Determine best artificial lift type for well conditions
- 3. Know target (production or casing pressure)
- 4. Aggressively prevent unplanned downtime
- 5. Troubleshoot detect rapidly, solve root cause!
- 6. Prioritize wells daily before driving route
- 7. Produce at the lowest flowing bottom hole pressure
- 8. Train wide and deep!

1. Install A.L. before liquid loading

June 4 – 6, 2012

2. Know which A.L. type to use

2. Know which A.L. type to use

TWO STAGE PLUNGER LIFT	GAS ASSISTED PLUNGER LIFT	PLUNGER ASSISTED GAS LIFT
○ Low GLR, marginal wells	○ Low GLR wells	○ Low GLR wells
○ 200 scf / bbl / 1000 ft	 Gas injected to annulus 400 scf / bbl / 1000 ft 	 Add plunger to intermittent gas lift wells
 Two or more plungers in the same well 	\circ Short shut-in times	• Reduces injected gas
 Ideal for slim hole or wells with packers 	o + / - 250 Bbls / day possible	 Eliminates fall back
 Can be used with injection 	\circ Plunger seal is important	 Increases production

Set production target – flow rate or casing pressure 3.

June 4 – 6, 2012

4. Aggressively prevent unplanned downtime

PRODUCTION (\$ 4.50 / Mcf)	\$'s per day	\$'s per week	\$'s per month
25 Mcf / day	\$ 113	\$ 788	\$ 3,150
50 Mcf / day	\$ 225	\$ 1,575	\$ 6,300
100 Mcf / day	\$ 450	\$ 3,150	\$ 12,600
250 Mcf / day	\$ 1,125	\$ 7,875	\$ 31,500
500 Mcf / day	\$ 2,250	\$ 15,750	\$ 63,000
750 Mcf / day	\$ 3,375	\$ 23,625	\$ 94,500
1,000 Mcf / day	\$ 4,500	\$ 31,500	\$ 126,000

How long to re-start a well? How long to detect after problem occurs, allocate well tender time, get parts, schedule wire line, schedule swab rig, etc ?

June 4 – 6, 2012

4. Aggressively prevent unplanned downtime

PREVENTATIVE MAINTENANCE

Inspection	Criteria	Technique	Daily	Weekly	Monthly	Other
Point	l!	L	[[
	Fully opens and closes	Visually observe	\checkmark			
	Supply line at 25 - 35 psi	Check supply line regulator	✓			
Motor Valve	Vent line clear	Motor valve closes	~			
	Leaks	Review pressure chart		~		Or upon reduced production
	Replace trim	Replace prior to failure				Set replacement schedule
		Visual Inspection	\checkmark			
	Leaks	Check O-ring	1		~	
Lubricator		Grease threads	1		~	
	Micro fractures, damaged threads	Visually inspect after all fast arrivals. Consider flanged lubricator.				Inspect after all fast arrivals. Consider annual NDT.
l I	No sand / ice in top section	Visually inspect	1		~	More frequently if needed
Lubricator	Compression set	Measure edge of lubricator to spring			~	Replace at appr. 1/2" reduction
Spring	Fractured	Observe loose pieces	 ✓ 			
ļ	Operational	Catch plunger			~	
Catcher	Lubricator ID clear	ID clear with catcher disengaged			~	
Arrival Sensor	Senses surfaced plunger	Observe plunger arrival(s)	\checkmark			
1	Wire to controller	Secure and does not obstruct valves	~			
1	Intake clogged	Check TP build time	 ✓ 			Watch charts (pressure, flow)
	Compression set spring	Pull and inspect spring	1			
Bottom Hole	Fishing neck integrity	Fishing neck not bent or mushroomed	1			6 month intervals
Spring	Seating cups	Replace when spring is pulled	1			until
l I	Fractured spring	Damaged plungers				proven otherwise

4. Aggressively prevent unplanned downtime

Inspection	Criteria	Technique	Daily	Weekly	Monthly	Other
Point						
	Fractured	Observe plunger cycle performance	✓			Check if missing arrivals
		Well conditions stable?			~	
	Correct for well conditions	Production target achieved?			~	
Plungers	Functional moving parts	Moving parts free, but not loose		✓		
	Loose parts	No obvious loose parts		✓		
	Fishing neck integrity	Fishing neck not bent or mushroomed			~	
	Worn	Measure plunger OD			~	Replace per schedule
Downstream	Leaks	Review Pressure Chart		✓		Or upon reduced production
Valves						
Battery	Voltage less than 10.5 V	Review Voltage	✓			
	(12 V system)					
Tubing	Loss of integrity	Review pressure charts		~		Or upon reduced production
Master valves	Leaks	Ensure no leaks when fully closed		~		
and wing valves	Grease	Grease valves. Excessive grease may			✓	Schedule per manufacturer
		foul plunger and hang it in tubing				recommendations

PREVENTATIVE MAINTENANCE

NOTE: Above is an example of a Preventative Maintenance program for plunger lift equipment. Based on actual field and specific well site experience, adjustments are anticipated.

5. Troubleshoot -

1. DETECT RAPIDLY

Station Name : Well # 2 H Alarm Text : Low Sales Press Time Logged : Feb 4, 2011, 7:06 AM Value : 32.9 Set point : 45.0 ALARM!

2. DIAGNOSE WITH DATA

Then prescribe

3. WORK THE RIGHT PROBLEM

- Pareto Analysis
- Training? Process ?

4. SOLVE ROOT CAUSE

- Plan, Do, Check, Act
- > 5 Why's
- ➢ A3's

5. Troubleshoot -

5. Troubleshoot -

June 4 – 6, 2012

5. Troubleshoot -

June 4 – 6, 2012

5. Troubleshoot -

5. Troubleshoot -

June 4 – 6, 2012

5. Troubleshoot -

	AT CLOSE						AT OPEN						RUN DATA						PRODU	ICTION TA
		Pr	essu	ires (j	osi)	Fluid	Pressures (psi)						Plunger Rise Arrivals							
Run #	Time	СР	тр	SLP	CP- TP	in Tbg	Time	СР	тр	SLP	Act. Lift	Req'd Lift	Time (min)	Velocity (ft/min)	Good	Miss	Open Duration	Close Duration	Gas (Mscf)	Liquid (Bbls)
5341	02/01/11 05:59AM	438	392	151	45	0.41	02/01/11 07:54AM	510	427	150	360	183	7.28	1050	1		00:10	01:54	10.2	0.0
5342	02/01/11 08:05AM	439	386	146	53	0.47	02/01/11 09:50AM	508	417	147	360	197	7.65	1000	1		00:11	01:44	11.7	0.0
5343	02/01/11 10:01AM	436	381	145	55	0.49	02/01/11 11:46AM	505	416	145	360	201	7.68	995	1		00:11	01:45	10.6	0.0
5344	02/01/11 11:57AM	434	381	146	53	0.47	02/01/11 01:42PM	504	413	144	360	197	7.58	1009	1		00:11	01:44	10.5	0.0
5345	⁴⁵ Liquid Load			0.44	02/01/11 03:34PM	501	416	141	360	187	7.40	1034	1		00:10	01:41	11.0	0.0		
5346	Lift Dr.					0.44	02/01/11 05:24PM	499	411	139	360	186	7.42	1031	1		00:10	01:39	10.7	0.0
5347			Sui	e		0.47	02/01/11 07:12PM	497	409	137	360	193	7.67	998	1		00:11	01:36	10.6	0.0
5348	Plunger	ve	200	city		0.45	02/01/11 08:59PM	494	409	134	360	185	7.38	1036	1		00.10	01:34	10.7	0.0
5349	Close	ti	me	•		0.45	02/01/11 10:54PM	495	408		S	elf A	Adjusting Controllers					4	10.4	0.0
5350	Produ	ict	ior	1		0.44	02/02/11 12:58AM	498	414	138	300	160	7.08	1008	1		00:11	01:03	10.0	0.0
5351	02/02/11 01:09AM	428	375	140	53	0.47	🖸 🛛 Fast Window	w	Gr	eate	r th	an 10	00 fpi	m 📴	Fast W	indow	• Increase	e Afterflow Ti	me	
5352	02/02/11 02:59AM	424	373	138	51	0.46	02 >	_					50 .p.	02			• Decreas	se On Time		
5353	02/02/11 05:06AM	427	378	139	49	0.44	0: Good Windo	w		500) to :	1000 f	pm	16 G	iood W	/indo\	N • No char	nges are Perfo	rmed	
5354	02/02/11 10:56AM	477	416	181	60	0.54	02	_						35			Degraa	o Aftorflow T	imol	
5355	02/02/11 12:16PM	454	410	158	44	0.39	Slow Windo	W		Less	tha	n 500	fpm	om 53 Slow Window Increas				se Atterflow Time ¹ ie Off Time		
5356	02/02/11 01:10PM	433	398	144	35	0.32	02/02/11 02:30PM	498	425	138	361	155	6.35	1204	1		00:09	01:20	10.5	0.0

5. Troubleshoot -

COMMON PROBLEMS

SYMPTOM	POSSIBLE CAUSES
No arrivals	Plunger stuck in lubricator. Worn plunger. Lift pressure insufficient. Too much liquid. Disconnected arrival sensor. Arrival sensor malfunction. Excessive grease in tubing from wellhead valves. Plunger stuck in tubing – try retrieval plunger. Rapid fall plunger flow valve hung open.
Slow arrivals	Worn plunger. Lift pressure insufficient. Too much liquid. Tubing restriction (scale, paraffin). Wrong plunger style.
Fast arrivals	Fall time too short. Plunger hung in well head – check catcher and well head valves. Tight spot in tubing. Too much lift pressure. Not enough liquid load.
Motor valve will not open	No gas supply pressure – check regulator. Clogged filter. Liquid in gas supply line. Debris in solenoid valve. Solenoid valve malfunction. Hole in motor valve diaphragm.
Motor valve will not close	Liquid in gas supply line. Debris in solenoid valve. Solenoid valve malfunction. Solenoid vent line plugged.
Motor valve leaks	Hydrate or other obstacle in trim. Inspect / replace trim. Consider ceramic trim.
Lubricator top seeps / leaks	Dry threads. Inspect "o" ring. Grease "o" ring.

5. Troubleshoot -

Jι

COMMON PROBLEMS

SYMPTOM	POSSIBLE CAUSES
Short battery life	Inspect battery. Inspect solar panel wires. Inspect solar panel – clean? 45 degree? Facing south? Check radio – constant on?
Plunger fishing neck mushroomed	Lubricator spring worn or too stiff. Fast plunger runs.
Catcher will not trap plunger	Inspect / replace spring (ball and spring type).
Motor valve closed, flow rate not zero	Motor valve leak or calibrate flow meter
Flow rate increasing at end of afterflow	Flow longer
Motor valve closed, TP & CP slowly equalize, fast and dry plunger runs, possible liquid produced after plunger arrives	Pressure is pushing liquid out of tubing. Shorten close time or add a standing valve.
Fall time elapsed, casing pressure not increasing, shut-in time remains	Reduce shut-in time or open at lower lift pressure
Consistent plunger runs; consistent fluid loads ollowed by instant liquid loading and no plunger runs	Tubing set too high. Liquid column slowly builds below tubing. When column reaches tubing, well loads
Fast, dry plunger runs. Liquid in tubing on each cycle	Fall time too short
ne 4 – 6, 2012 Appalachian Basi	in Gas Well Deliquification Seminar 40 Marietta, Ohio

5. Troubleshoot -

Clean if obstructed

June 4 – 6, 2012

5) Check trim/seat for wear, leaks

5. Troubleshoot -

COMMON PROBLEMS

- If vent to tanks to raise plunger, how long should you vent after plunger surfaces?
- If swab, how do you know when it's OK to restart the plunger?

5. Troubleshoot -

WORK ON THE RIGHT PROBLEM

Troubleshoot -5.

Marietta, Ohio

5. Troubleshoot -

SOLVE ROOT CAUSE

- **1. WHY is plunger missing arrivals?**
 - Upward force is insufficient to push plunger to the surface
- **2. WHY is upward force insufficient?**
 - No missed arrivals for prior 3 months. Lift pressure and liquid load have not changed. Plunger is worn.
- 3. WHY is plunger worn?
 - Plungers are only replaced when frequent missed arrivals occur, after production declines.
- 4. WHY wait until profits are lost?
 - We have not implemented a preventative maintenance plunger replacement program

5. WHY don't we have a plunger preventative maintenance program? ??

5. Troubleshoot -

6. Prioritize daily

Mar II Mariana	Last P	olled	Batt.	Chatha	Time	Pres	sures	(psi)	Flow	Velocity		Today		Ye	Yesterday			Target	
well Name	Date	Time	Volts	State	Remain.	Tube	Case	Sales	Rate	(ft/min)	Gas	Arr.	Fails	Gas	Arr.	Fails	Gas	%	
	01/26/11	08:42:07	12.8	Plunger Falling	00:06:06	437	497	154	0	477	26	8	0	362	18	0	320	113.1	
	01/26/11	08:41:26	11.9	Plunger Falling	00:10:23	354	369	151	0	194	40	4	0	291	13		450	64.6	
	12/22/10	09:29:58	11.8	Manual Mode	00:00:00	1	478	0	0	0	0	0	0	0	0	0	0	0.0	
	01/30/11	19:09:24	13.1	Manual Mode	00:00:00	-4	465	82	0	0	0	0	0		0	0	450	0.0	
	01/31/11	08:52:38	12.9	Production Mode	01:48:00	63	174	75	575	529	63	4		509	10	0	700	72.7	
	01/31/11	09:24:49	13.1	Manual Mode	00:00:00	542	542	56	0	0	3	9	3	350	13	0	0	0.0	
\mathbf{G}	01/28/11	13:39:10	14.1	Plunger Falling	00:20:35	485	641	94	0	887	19	5	1	227	15	3	360	63.0	
	01/26/11	08:42:50	13.6	Manual Mode	00:00:00	461	882	53	0		0	0	0	0	0	0	340	0.0	
U U	01/31/11	08:51:14	12.8	Plunger Rising	00:34:19	103	482	105	004	1269	78	20	0	693	47	0	700	99.1	
C	01/26/11	08:41:12	14.5	Production Mode	00:45:19	133	315	211	475	983	71	7	0	588	17	0	775	75.9	
	01/26/				3:44:17	115	205	125	512	0	58		2	500	0	6	700	71.4	
	01/26/	Prior i	itiz	e before	0:11:01	218	238	76	0	867	36	6	0	309	16	0	550	56.3	
	01/26/				142	60	168	78	467	1143	51	4	0	422	11	0	600	70.3	
2	01/26/	going	j to	well site!	0:36:16	94	625	104	352	253	12	3	0	117	8	0	180	65.3	
	01/26/				3:06:50	112	408	153	668	0	40	0	2	401	0	5	380	105.5	
	01/26/11	08:42:22	12.7	Plunger Rising	00:44:28	161	216	164	1855	1506	36	9	0	363	29	0	390	93.0	
	01/26/11	08:42:24	13.6	Plunger Rising	03:39:53	148	428	155	727	0	60	0	2	539	0	5	650	82.9	
	01/25/11	10:52:08	11.2	Manual Mode	00:00:00	155	588	150	821	0	75	0	0	541	0	0	650	83.2	
	01/25/11	10:52:55	11.5	Plunger Rising	00:23:59	137	418	150	529	1181	81	28	0	397	40	3	500	79.5	
	01/21/11	16:28:54	11.5	Manual Mode	00:00:00	1	2	142	0	0	0	0	0	0	0	0	500	0.0	
	01/26/11	08:40:20	11.5	Manual Mode	00:00:00	3	-1	148	0	0	0	0	0	0	0	0	600	0.0	
	01/26/11	08:41:00	11.6	Plunger Rising	00:55:27	142	473	155	748	1077	15	4	0	129	11	0	180	71.8	
	01/26/11	08:41:17	13.8	Production Mode	01:33:42	134	298	148	436	938	58	2	0	481	6	0	600	80.1	
	01/31/11	08:52:47	12.9	Production Mode	00:17:24	149	309	156	1174	908	67	12	0	493	30	0	0	0.0	
	01/26/11	14:05:23	13.3	Plunger Rising	00:40:33	141	395	152	619	1424	116	15	0	324	8	1	400	81.0	
	01/26/11	08:40:34	12.8	Plunger Rising	00:59:47	199	407	177	3991	408	36	4	0	403	13	0	580	69.4	
	01/26/11	08:41:38	12.4	Pressure Building	00:00:00	328	332	96	0	0	0	0	0	70	0	14	150	46.4	

June 4 – 6, 2012

7. Produce at lowest flowing bottom hole pressure

- ✓ Know production target
- ✓ Minimize restrictions
- ✓ Select correct plunger
- ✓ Use a standing valve
- Address well variations with algorithm
- $\checkmark\,$ Review on each cycle
 - Fluid in tubing
 - Lift pressure
 - > Plunger velocity
 - Shut-in time
 - Gas produced

Optimize

Review

June 4 – 6, 2012

Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the <u>www.alrdc.com</u> web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.

Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.