Plunger Lift Remote Surveillance Improves Shale Well Production

JASON CHURCHILL, P.E.
XTO Operations Engineer

DAVID COSBY, P.E.
Business Development
CONTENTS

▸ INTRODUCTION
▸ WELL SELECTION
▸ POWER OF SURVEILLANCE
▸ OPTIMIZING & TROUBLESHOOTING
▸ CONCLUSION
▸ ADDENDUM
INTRODUCTION
XTO Fort Worth Operations

OPERATIONS
• North/South Areas
• 7 Foremen
• 50+ operators
• 1900 wells
 Daily Averages
 • 900,000 Mcf
 • 110,000 Bbls Water
INTRODUCTION
2008 Dilemma

• Over 90% of wells in US are liquid loaded. (Marathon Analysis)
• Gas lift effective, yet costly. Overused.
• Venting and foaming agents inconsistent.
• 100 wells on stand alone PL. Limited results.
• Decided to explore plunger lift with remote monitoring and control.
INTRODUCTION
Objectives

PROCESS
• Installed 50 systems with telemetry from various suppliers.
• Utilized real time data for root cause analysis.

GOALS
• Improve production.
• Reduce downtime.
• Reduce operational cost.
• Rapid payback.
INTRODUCTION

Examples

<table>
<thead>
<tr>
<th>WELL # 1</th>
<th>PRODUCTION</th>
<th>DOWNTIME</th>
<th>VENTING</th>
<th>REPLACE PLUNGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE</td>
<td>148 Mcf / d</td>
<td>22 %</td>
<td>3 X per Wk</td>
<td>Quarterly</td>
</tr>
<tr>
<td>AFTER</td>
<td>186 Mcf / d</td>
<td>8 %</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(25.7% Increase)</td>
<td>(63.6% Decrease)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL # 2</th>
<th>PRODUCTION</th>
<th>DOWNTIME</th>
<th>VENTING</th>
<th>REPLACE PLUNGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE</td>
<td>82 Mcf / d</td>
<td>60 %</td>
<td>Daily</td>
<td>Quarterly</td>
</tr>
<tr>
<td>AFTER</td>
<td>212 Mcf / d</td>
<td>10 %</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(158 % Increase)</td>
<td>(83.3% Decrease)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION
Inclusive Lifting Cost ($ / Mcf)

<table>
<thead>
<tr>
<th>LIFT METHOD</th>
<th>LIFTING COST COMPARISON ($ / Mcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Gas Lift</td>
<td>$1.04</td>
</tr>
<tr>
<td>Plunger Lift – No Telemetry</td>
<td>$0.25</td>
</tr>
<tr>
<td>Plunger Lift – With Telemetry</td>
<td>$0.19</td>
</tr>
</tbody>
</table>

- Lifting costs reduced up to 75% with automation!
- Optimization provides additional value, discussed later
- Downtime occurs at lower frequency and duration
- Coordination between field and office proved crucial
WELL CANDIDATE SELECTION

Signs of Loading

Critical Flow Rate

- Minimum flow rate at which liquid is carried to the surface.
- Experience indicates Turner under predicts onset of loading.
- Loading occurs down hole long before visible at surface.
- Guo et al. predicts critical rate based on down hole conditions
 - ~750 Mcf/d
WELL CANDIDATE SELECTION
Signs of Loading

- Erratic Production
- Liquid Loading
- Casing Pressure
- Line Pressure
- Plunger Lift Installed
- Erratic Production

Feb. 27 - Mar. 2, 2011
WELL CANDIDATE SELECTION
Flow Rate vs Liquid Produced

<table>
<thead>
<tr>
<th>WELL</th>
<th>MCF/D</th>
<th>BBLS/D</th>
<th>GLR</th>
<th>LINE PRESSURE</th>
<th>LIFT PRESSURE (CP-LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well # 1</td>
<td>550</td>
<td>204</td>
<td>2.7</td>
<td>135</td>
<td>500</td>
</tr>
<tr>
<td>Well # 2</td>
<td>550</td>
<td>94</td>
<td>5.8</td>
<td>180</td>
<td>500</td>
</tr>
<tr>
<td>Well # 3</td>
<td>300</td>
<td>61</td>
<td>4.9</td>
<td>140</td>
<td>720</td>
</tr>
<tr>
<td>Well # 4</td>
<td>550</td>
<td>56</td>
<td>9.8</td>
<td>60</td>
<td>540</td>
</tr>
<tr>
<td>Well # 5</td>
<td>480</td>
<td>54</td>
<td>8.9</td>
<td>70</td>
<td>400</td>
</tr>
<tr>
<td>Well # 6</td>
<td>600</td>
<td>50</td>
<td>12.0</td>
<td>180</td>
<td>500</td>
</tr>
<tr>
<td>Well # 7</td>
<td>200</td>
<td>35</td>
<td>5.7</td>
<td>320</td>
<td>540</td>
</tr>
<tr>
<td>Well # 8</td>
<td>477</td>
<td>30</td>
<td>15.9</td>
<td>140</td>
<td>300</td>
</tr>
<tr>
<td>Well # 9</td>
<td>460</td>
<td>27</td>
<td>17.0</td>
<td>130</td>
<td>300</td>
</tr>
</tbody>
</table>
• Low GLR wells can prove difficult!

• Low GLR wells with higher flow rates are easier

Non-Productive Time (NPT) is Unplanned Downtime
• Leverage expert operator skills over many wells
• Daily pinpoint lease operator top priorities
• Remote manual close (weather, pipeline, tank levels)
• Real time alarm notification (tank levels, line pressure, fast arrivals, well shut-in, etc)
• Faster troubleshooting – DATA!
• Rapid leak detection
• Detect some EFM calibration issues
• Reduce equipment damage

NOW KNOW, ACT NOW, PROFIT MORE!
POWER OF SURVEILLANCE
Tools

Well Names

- Well Name: Piller Plugging
 - Time: 02/28/11
 - Production Mode: 13.0
 - Pressure: 529 psi
 - Flow: 35 Mcf

- Well Name: Bower Plugging
 - Time: 02/28/11
 - Production Mode: 13.0
 - Pressure: 575 psi
 - Flow: 35 Mcf

- Well Name: Larmer Plugging
 - Time: 02/28/11
 - Production Mode: 13.0
 - Pressure: 529 psi
 - Flow: 35 Mcf

WELL SUMMARY SCREEN
REAL TIME SNAPSHOT
PRODUCTION!

RIGHT INFORMATION
RIGHT FORMAT
ANYTIME
ANYWHERE

Feb. 27 - Mar. 2, 2011
2011 Gas Well Deliquification Workshop
Denver, Colorado
POWER OF SURVEILLANCE

Tools

Plunger Lift Cycle Report

<table>
<thead>
<tr>
<th>Run #</th>
<th>AT CLOSE</th>
<th>AT OPEN</th>
<th>RUN DATA</th>
<th>PRODUCTION DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressure (psi)</td>
<td>Time</td>
<td>Pressure (psi)</td>
<td>Time</td>
</tr>
<tr>
<td>5341</td>
<td>CP: 151, TP: 45</td>
<td>02/01/11 07:54 AM</td>
<td>CP: 510, TP: 150</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5342</td>
<td>CP: 146, TP: 53</td>
<td>02/01/11 09:50 AM</td>
<td>CP: 508, TP: 147</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5343</td>
<td>CP: 145, TP: 55</td>
<td>02/01/11 11:46 AM</td>
<td>CP: 505, TP: 145</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5344</td>
<td>CP: 144, TP: 53</td>
<td>02/01/11 01:42 PM</td>
<td>CP: 504, TP: 144</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5345</td>
<td>CP: 144, TP: 53</td>
<td>02/01/11 03:34 PM</td>
<td>CP: 501, TP: 141</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5346</td>
<td>CP: 140, TP: 49</td>
<td>02/01/11 12:25 PM</td>
<td>CP: 499, TP: 139</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5347</td>
<td>CP: 137, TP: 53</td>
<td>02/01/11 07:12 PM</td>
<td>CP: 497, TP: 137</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5348</td>
<td>CP: 138, TP: 50</td>
<td>02/01/11 08:59 PM</td>
<td>CP: 494, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5349</td>
<td>CP: 134, TP: 51</td>
<td>02/01/11 10:54 PM</td>
<td>CP: 495, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5350</td>
<td>CP: 135, TP: 51</td>
<td>02/01/11 12:58 PM</td>
<td>CP: 495, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5351</td>
<td>CP: 135, TP: 51</td>
<td>02/01/11 02:48 PM</td>
<td>CP: 495, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5352</td>
<td>CP: 135, TP: 51</td>
<td>02/01/11 02:02 PM</td>
<td>CP: 495, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
<tr>
<td>5353</td>
<td>CP: 135, TP: 51</td>
<td>02/01/11 02:30 PM</td>
<td>CP: 496, TP: 135</td>
<td>02/01/11 10:42 AM</td>
</tr>
</tbody>
</table>

Key Parameters

- **Cycle #**
- **Liquid Load (CP – TP)**
- **Lift Pressure (CP – LP)**
- **Close Time**
- **Plunger Velocity**

Additional Information

- **Station Name:**
- **Report Range:** 02/01/11 08:00 To 02/02/11 14:43
- **Temperature:** 30°F
- **System Voltage:** 13.6 V
POWER OF SURVEILLANCE

Tools

- Flow Rate
- Casing Pressure
- Tubing Pressure
- Line Pressure

Detail Well History

- 12/21/09 20:00
- 12/21/09 20:30
- 2/21/09 21:00
- 2/21/09 21:10
- 2/21/09 21:20
- 12/21/09 21:30

- PSI
- MCF

TIME

Feb. 27 - Mar. 2, 2011
2011 Gas Well Deliquification Workshop
Denver, Colorado
OPTIMIZING SHALE WELLS
Process

• **FOCUS ON PRODUCTION!**
• Use reliable hardware
• Minimize restrictions
 • BH Spring to pipeline
• Review on each cycle
 • Fluid in Tubing
 • Lift Pressure
 • Plunger Velocity
• Gas Produced
• Short afterflow on initial cycles
• Troubleshoot – DATA!

![IPR Curve](image)

• **OPERATE AT LOWEST POSSIBLE CP**
 • Many cycles each day
 • Open when fall time elapses
 • Fast falling plungers
 • Standing valves
OPTIMIZING SHALE WELLS

Examples

PROBLEM: ERRATIC PRODUCTION

Daily Well Production

LINE PRESSURE
FREE FLOWING
PLUNGER LIFT

PRODUCTION

Over 200% PRODUCTION INCREASE

05/30/09 05/06/09 06/13/09 06/20/09 06/27/09 07/04/09

Volume (Mscf) Static Press (psia)
OPTIMIZING SHALE WELLS
Examples

PROBLEM: ERRATIC PRODUCTION

NO TELEMETRY
TIME CONTROL

TELEMETRY
OPEN ON LIFT PRESSURE

17 % PRODUCTION INCREASE
OPTIMIZING SHALE WELLS

Examples

Plunger Lift Cycle Report

Last Poll Time: 13-FEB-11 08:48PM
Temperature: 58°F
System Voltage: 13.2 V

<table>
<thead>
<tr>
<th>Run #</th>
<th>Time</th>
<th>AT CLOSE Pressures (psi)</th>
<th>Fluid in Tbg</th>
<th>AT OPEN Pressures (psi)</th>
<th>Act. Lift</th>
<th>Req’d Lift</th>
<th>Time (min)</th>
<th>Velocity (ft/min)</th>
<th>Close Time</th>
<th>Open Duration</th>
<th>Close Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3460</td>
<td>02/13/11 04:36AM</td>
<td>314 253 135 61</td>
<td>0.54</td>
<td>02/13/11 05:15AM</td>
<td>355 326 134</td>
<td>220 210</td>
<td>5.83</td>
<td>1339</td>
<td>00:06</td>
<td>00:38</td>
<td></td>
</tr>
<tr>
<td>3461</td>
<td>02/13/11 05:21AM</td>
<td>312 254 135 58</td>
<td>0.52</td>
<td>02/13/11 06:02AM</td>
<td>354 337 134</td>
<td>220 204</td>
<td>4.58</td>
<td>1704</td>
<td>00:05</td>
<td>00:40</td>
<td></td>
</tr>
<tr>
<td>3462</td>
<td>02/13/11 06:07AM</td>
<td>314 256 133 58</td>
<td>0.52</td>
<td>02/13/11 06:44AM</td>
<td>353 326 133</td>
<td>220 204</td>
<td>6.03</td>
<td>1294</td>
<td>00:07</td>
<td>00:36</td>
<td></td>
</tr>
<tr>
<td>3463</td>
<td>02/13/11 06:51AM</td>
<td>311 251 134 60</td>
<td>0.54</td>
<td>02/13/11 07:33AM</td>
<td>354 331 134</td>
<td>220 209</td>
<td>5.12</td>
<td>1526</td>
<td>00:05</td>
<td>00:41</td>
<td></td>
</tr>
<tr>
<td>3464</td>
<td>02/13/11 07:39AM</td>
<td>313 256 133 57</td>
<td>0.50</td>
<td>02/13/11 08:14AM</td>
<td>351 321 132</td>
<td>219 200</td>
<td>6.00</td>
<td>1302</td>
<td>00:07</td>
<td>00:35</td>
<td></td>
</tr>
<tr>
<td>3465</td>
<td>02/13/11 08:21AM</td>
<td>310 251 132 59</td>
<td>0.53</td>
<td>02/13/11 09:01AM</td>
<td>352 330 132</td>
<td>219 205</td>
<td>4.93</td>
<td>1583</td>
<td>00:05</td>
<td>00:39</td>
<td></td>
</tr>
<tr>
<td>3466</td>
<td>02/13/11 09:07AM</td>
<td>312 259 134 52</td>
<td>0.47</td>
<td>02/13/11 09:50AM</td>
<td>356 348 136</td>
<td>220 192</td>
<td>4.07</td>
<td>1920</td>
<td>00:05</td>
<td>00:43</td>
<td></td>
</tr>
<tr>
<td>3467</td>
<td>02/13/11 09:55AM</td>
<td>315 257 137 59</td>
<td>0.52</td>
<td>02/13/11 10:40AM</td>
<td>359 337 139</td>
<td>220 208</td>
<td>4.73</td>
<td>1920</td>
<td>00:05</td>
<td>00:44</td>
<td></td>
</tr>
<tr>
<td>3468</td>
<td>02/13/11 10:45AM</td>
<td>317 262 139 55</td>
<td>0.49</td>
<td>02/13/11 11:25AM</td>
<td>357 339 137</td>
<td>220 210</td>
<td>5.83</td>
<td>1339</td>
<td>00:06</td>
<td>00:38</td>
<td></td>
</tr>
<tr>
<td>3469</td>
<td>02/13/11 11:31AM</td>
<td>317 251 138 66</td>
<td>0.59</td>
<td>02/13/11 12:07PM</td>
<td>354 323 134</td>
<td>220 205</td>
<td>4.93</td>
<td>1583</td>
<td>00:05</td>
<td>00:39</td>
<td></td>
</tr>
<tr>
<td>3470</td>
<td>02/13/11 12:13PM</td>
<td>312 254 134 59</td>
<td>0.52</td>
<td>02/13/11 12:54PM</td>
<td>356 329 136</td>
<td>220 192</td>
<td>4.07</td>
<td>1920</td>
<td>00:05</td>
<td>00:43</td>
<td></td>
</tr>
<tr>
<td>3471</td>
<td>02/13/11 01:01PM</td>
<td>314 256 136 60</td>
<td>0.54</td>
<td>02/13/11 01:42PM</td>
<td>357 332 137</td>
<td>220 208</td>
<td>4.73</td>
<td>1920</td>
<td>00:05</td>
<td>00:44</td>
<td></td>
</tr>
<tr>
<td>3472</td>
<td>02/13/11 01:48PM</td>
<td>315 257 137 59</td>
<td>0.52</td>
<td>02/13/11 02:32PM</td>
<td>358 342 138</td>
<td>220 210</td>
<td>5.83</td>
<td>1339</td>
<td>00:06</td>
<td>00:38</td>
<td></td>
</tr>
<tr>
<td>3473</td>
<td>02/13/11 02:37PM</td>
<td>318 262 138 56</td>
<td>0.50</td>
<td>02/13/11 03:16PM</td>
<td>358 337 137</td>
<td>220 210</td>
<td>5.83</td>
<td>1339</td>
<td>00:06</td>
<td>00:38</td>
<td></td>
</tr>
</tbody>
</table>

PROBLEM:
PLUNGER VELOCITY IS FAST
Increase Afterflow or Decrease Close Time?

Notes:
- **Fall Time** (15 min)
- **Close Time** (Much longer)
- **Lift Pressure** (220 psi)
- **Reduce Lift Pressure Will Shorten Close Time**. Plunger will make more cycles per day.
OPTIMIZING SHALE WELLS
Examples

PROBLEM: PRODUCTION BELOW TARGET

LINE PRESSURE

CONTROL SETTINGS CHANGE

20 % PRODUCTION INCREASE

PRODUCTION

OPTIMIZING SHALE WELLS
Examples

PROBLEM: PRODUCTION BELOW TARGET

LINE PRESSURE

CONTROL SETTINGS CHANGE

20 % PRODUCTION INCREASE

PRODUCTION
OPTIMIZING SHALE WELLS

Examples

PROBLEM: PRODUCTION BELOW TARGET

Fast Fall Plunger with Control Settings Change

Over 100% Production Increase
OPTIMIZING SHALE WELLS

Examples

PROBLEM: NO FLUID IN TUBING WHEN WELL OPENS

SHORTEN CLOSE TIME OR INSTALL STANDING VALVE. TUBING AND CASING PRESSURE EQUALIZE WHEN WELL IS CLOSED.
OPTIMIZING SHALE WELLS

Examples

PROBLEM: LIQUID PUSHED OUT OF TUBING DURING CLOSE

LINE PRESSURE

STANDING VALVE

PRODUCTION

26 % PRODUCTION INCREASE
Troubleshooting Shale Wells Examples

Problem: Possibly more fluid in the tubing on each run. May take longer to build casing pressure.

Motor Valve Leak. Tubing pressure decline and flow rate observed with well closed.
TROUBLESHOOTING SHALE WELLS

Examples

Line Pressure Leak: Line pressure is declining when well is closed. Typically liquid level controller or dump valve.

Problem: Missed arrivals. Lost production.

CASING PRESSURE

TUBING PRESSURE

LINE PRESSURE

FLOW RATE
TROUBLESHOOTING SHALE WELLS

Examples

Problem: Flow rate is not zero when well is closed.

- Casing pressure
- Tubing pressure
- Line pressure
- Flow rate
- Calibrate flow meter
CONCLUSION
Plunger lift improves shale production

• Shale well production dramatically improves when
 • Liquid is removed
 • Unplanned downtime is minimized
 • Plunger lift cycles are optimized

• Plunger Lift
 • Effectively removes liquid from shale wells
 • Is cost effective with a rapid payback
 • Is a long term solution

• Plunger Lift with Surveillance and Real Time alarms
 • Supplement field knowledge with in house “optimizers”
 • Provides real time data for root cause analysis

KNOW NOW
ACT NOW
PROFIT MORE!
ADDENDUM
POWER OF SURVEILLANCE
Tools

- Casing Pressure
- Lift Pressure
- Flow Rate
- Line Pressure
- Liquid Load
- Tubing Pressure
- Well Closes
- Well Opens
- Head Gas Produced
- Plunger Arrives
- Lateral Leg Unloads
OPTIMIZING SHALE WELLS
Examples

FREE FLOWING
PLUNGER LIFT

LINE PRESSURE

PRODUCTION

LEVEL AND STABLE PRODUCTION

PROBLEM:
ERRATIC PRODUCTION
OPTIMIZING SHALE WELLS

Examples

FREE FLOWING

PLUNGER LIFT

LINE PRESSURE

PRODUCTION

LEVEL AND STABLE PRODUCTION

PROBLEM:
ERRATIC PRODUCTION

OPTIMIZING SHALE WELLS

Examples

FREE FLOWING

PLUNGER LIFT

LINE PRESSURE

PRODUCTION

LEVEL AND STABLE PRODUCTION

PROBLEM:
ERRATIC PRODUCTION
OPTIMIZING SHALE WELLS

Examples

PROBLEM: ERRATIC PRODUCTION

FREE FLOWING

PLUNGER LIFT

LINE PRESSURE

PRODUCTION

29% PRODUCTION INCREASE

Daily Well Production

Feb. 27 - Mar. 2, 2011

2011 Gas Well Deliquification Workshop
Denver, Colorado
OPTIMIZING SHALE WELLS
Examples

PROBLEM: ERRATIC PRODUCTION

- **Line Pressure**
- **Free Flowing**
- **Plunger Lift with Telemetry Open on Lift Pressure**
- **Plunger Lift No Telemetry Open On Time**

Production Increase: 15%
OPTIMIZING SHALE WELLS
Examples

PROBLEM: PRODUCTION BELOW TARGET

INCREASE AFTERFLOW. PRODUCTION IS ABOVE CRITICAL AND RISING WHEN WELL IS CLOSED.

CASING PRESSURE
TUBING PRESSURE
LINE PRESSURE
FLOW RATE
OPTIMIZING SHALE WELLS

Examples

PROBLEM:
Production below target

PLUNGER FALL TIME IS 15 MIN.
Close time same as fall time.

PLUNGER VELOCITY IS FAST.
Increase afterflow.

MONITOR PRODUCTION.

Table

<table>
<thead>
<tr>
<th>Run #</th>
<th>Time</th>
<th>Pressures (psi)</th>
<th>Fluid in Tbg</th>
<th>Time</th>
<th>Pressures (psi)</th>
<th>Plunger Rise</th>
<th>Arrivals</th>
<th>Open Duration</th>
<th>Close Duration</th>
<th>Gas (Mscf)</th>
<th>Liquid (Bbls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>01/30/11 09:01PM</td>
<td>318 281 170 37</td>
<td>0.33</td>
<td>01/30/11 09:16PM</td>
<td>330 293 167 163 172</td>
<td>13.65 545</td>
<td>1</td>
<td>00:33</td>
<td>00:15</td>
<td>15.5</td>
<td>0.0</td>
</tr>
<tr>
<td>96</td>
<td>01/30/11 09:50PM</td>
<td>317 275 163 42</td>
<td>0.33</td>
<td>01/30/11 10:05PM</td>
<td>326 294 161 166 161</td>
<td>8.38 903</td>
<td>1</td>
<td>00:29</td>
<td>00:15</td>
<td>13.8</td>
<td>0.0</td>
</tr>
<tr>
<td>97</td>
<td>01/30/11 10:34PM</td>
<td>317 275 162 41</td>
<td>0.37</td>
<td>01/30/11 10:49PM</td>
<td>326 292 162 165 179</td>
<td>7.47 1014</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.6</td>
<td>0.0</td>
</tr>
<tr>
<td>98</td>
<td>01/30/11 11:16PM</td>
<td>313 281 161 32</td>
<td>0.29</td>
<td>01/30/11 11:31PM</td>
<td>324 301 162 162 159</td>
<td>7.57 1000</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.8</td>
<td>0.0</td>
</tr>
<tr>
<td>99</td>
<td>01/30/11 11:59PM</td>
<td>313 273 161 40</td>
<td>0.35</td>
<td>01/31/11 12:14AM</td>
<td>323 290 161 163 175</td>
<td>7.43 1018</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.2</td>
<td>0.0</td>
</tr>
<tr>
<td>100</td>
<td>01/31/11 12:42AM</td>
<td>312 276 160 36</td>
<td>0.32</td>
<td>01/31/11 12:57AM</td>
<td>322 294 160 162 166</td>
<td>6.85 1105</td>
<td>1</td>
<td>00:26</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>101</td>
<td>01/31/11 01:24AM</td>
<td>311 275 159 36</td>
<td>0.32</td>
<td>01/31/11 01:39AM</td>
<td>321 292 159 162 165</td>
<td>6.95 1089</td>
<td>1</td>
<td>00:26</td>
<td>00:15</td>
<td>13.1</td>
<td>0.0</td>
</tr>
<tr>
<td>102</td>
<td>01/31/11 02:06AM</td>
<td>311 272 160 38</td>
<td>0.34</td>
<td>01/31/11 02:21AM</td>
<td>320 289 161 159 172</td>
<td>7.63 991</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.3</td>
<td>0.0</td>
</tr>
<tr>
<td>103</td>
<td>01/31/11 02:49AM</td>
<td>309 274 160 34</td>
<td>0.31</td>
<td>01/31/11 03:04AM</td>
<td>319 294 160 158 163</td>
<td>7.42 1020</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.2</td>
<td>0.0</td>
</tr>
<tr>
<td>104</td>
<td>01/31/11 03:31AM</td>
<td>308 273 161 35</td>
<td>0.32</td>
<td>01/31/11 03:45AM</td>
<td>318 292 161 158 165</td>
<td>7.15 1058</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>12.8</td>
<td>0.0</td>
</tr>
<tr>
<td>105</td>
<td>01/31/11 04:13AM</td>
<td>308 272 164 36</td>
<td>0.32</td>
<td>01/31/11 04:29AM</td>
<td>318 293 162 156 167</td>
<td>7.65 989</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.2</td>
<td>0.0</td>
</tr>
<tr>
<td>106</td>
<td>01/31/11 04:56AM</td>
<td>308 272 162 36</td>
<td>0.32</td>
<td>01/31/11 05:11AM</td>
<td>308 294 162 157 166</td>
<td>7.18 1054</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>13.2</td>
<td>0.0</td>
</tr>
<tr>
<td>107</td>
<td>01/31/11 05:39AM</td>
<td>307 271 161 36</td>
<td>0.32</td>
<td>01/31/11 05:54AM</td>
<td>306 293 162 157 167</td>
<td>7.08 1068</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>108</td>
<td>01/31/11 06:21AM</td>
<td>306 269 162 38</td>
<td>0.34</td>
<td>01/31/11 06:36AM</td>
<td>316 287 162 156 165</td>
<td>6.92 1068</td>
<td>1</td>
<td>00:27</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>109</td>
<td>01/31/11 07:06AM</td>
<td>307 267 161 40</td>
<td>0.36</td>
<td>01/31/11 07:20AM</td>
<td>317 288 161 169 158</td>
<td>6.92 1068</td>
<td>1</td>
<td>00:26</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>110</td>
<td>01/31/11 07:50AM</td>
<td>310 257 161 54</td>
<td>0.48</td>
<td>01/31/11 08:05AM</td>
<td>320 273 161 169 159</td>
<td>6.69 1068</td>
<td>1</td>
<td>00:26</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
<tr>
<td>111</td>
<td>01/31/11 08:35AM</td>
<td>310 238 161 45</td>
<td>0.40</td>
<td>01/31/11 08:50AM</td>
<td>315 280 161 169 148</td>
<td>6.69 1068</td>
<td>1</td>
<td>00:26</td>
<td>00:15</td>
<td>12.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>
OPTIMIZING SHALE WELLS
Examples

PROBLEM: PRODUCTION BELOW TARGET

LINE PRESSURE

CONTROL SETTINGS CHANGE

44% PRODUCTION INCREASE

PRODUCTION
OPTIMIZING SHALE WELLS

Examples

Problem: Production below target

Line Pressure

Production

Pad Plunger

Fast Fall Plunger

39% Production Increase

Daily Well Production

OPTIMIZING SHALE WELLS
Examples

Problem: Production below target

Line Pressure

Production

Pad Plunger

Fast Fall Plunger

39% Production Increase

Daily Well Production

Feb. 27 - Mar. 2, 2011

2011 Gas Well Deliquification Workshop
Denver, Colorado
PROBLEM: LIQUID PUSHED OUT OF TUBING DURING CLOSE.

STANDING VALVE

LINE PRESSURE

PRODUCTION

50% PRODUCTION INCREASE
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.